BASIS DAN DIMENSI ATAS PADA GRAF PEMBAGI NOL DARI RING KOMUTATIF

Authors

  • Inne Syafrian Putri UIN Sunan Gunung Djati Bandung
  • Bintang Puja Rahayu UIN Sunan Gunung Djati Bandung

DOI:

https://doi.org/10.552273/jms.v2i1.164

Keywords:

Base, Upper Dimension, Zero divisor graph, Commutative ring

Abstract

Let  be the set of nonzero divisors of the commutative ring . The zero divisor graph of  is  with the set of vertices , where two distinct vertices  and  are neighbors if and only if . The value of the upper dimension and the minimum solution set (base) of the zero divisor graph  is finite. The steps to find the upper dimensions and base are from the specified ring, determine the zero divisor graph of the ring, and look for a different representation of . The set  is called the solution set if all the vertices of  have different representations of . In this study, some theorem about upper dimensions and base of the zero divisor graph of the commutative ring are discussed.

 

 

References

A. Ardiansyah, “Total k-defisiensi Titik pada Graf Bipartisi Komplit ????????,????”, Skripsi, Jur. Matematika, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia, 2015.

Bondy, J. A., & Murty, Graph Theory with Applications. Ontario: Departement of Combinatorics and Optimization, University of Waterloo, 1976.

Chartrand, G. & Lesniak, L. 1986. Graphs and Digraphs Second Edition. California: a Division of Wadsworth, Inc.

D.D. Anderson, M. Naseer, Beck’s coloring of a commutative ring, J. Algebra 159 (1993) 500–517.

D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring

F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191–195

G. Chartrand, C. Poisson, P. Zhang, Resolvability and the upper dimension of graphs, Int. J. Comput. Math. Appl. 39 (2000) 19–28.

Herstein,LN (1999). Topic In Algebra, Secon edition , Newyork: John Wiles and Sons

I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208–226

Munir,Renaldi.2005.Matematika Diskrit.Bandung.Informatika

P.J. Slater, Leaves of trees, Congr. Number. 14 (1975) 549–559

Rasiman.dkk. 2018. Teori Ring. Semarang. UNIV PGRI Semarang Press

S. Pirzada, M. Aijaz. S.P Redmond, Upper dimension and bases of zero-divisor graphs of commutative rings, AKCE International Journal of Graphs and Combinatorics. 2019

S.Pirzada, M.Aijaz, S.P.Redmond, On upper dimension of graphs and their bases sets, Discrete Mathematics Letters, 3 (2020) 37–43

Soleha. Setyowati, Dian W. A.W Satrio, “Kajian Sifat – Sifat Graf Pembagi-Nol dari Ring Komutatif dengan Elemen Satuan”, Prosiding Seminar Nasional Matematika dan Pendidikan Matematika 2015 ISBN No. 978-979-028-728-0, Surabaya, 2015

Downloads

Published

2022-02-26

How to Cite

Syafrian Putri, I., & Puja Rahayu, B. (2022). BASIS DAN DIMENSI ATAS PADA GRAF PEMBAGI NOL DARI RING KOMUTATIF. Jurnal Matematika Dan Sains (JMS), 2(1), 151–164. https://doi.org/10.552273/jms.v2i1.164