TITIK TETAP REICH DI DALAM RUANG b-METRIK
DOI:
https://doi.org/10.552273/jms.v2i02.175Abstract
Problem of linear equation, integral equation, and differential equation can be solved with a fixed point. One of generalization of metric space is b-metric space. This article discusses a lemma, a theorem and an example in b-metric space. We discuss a theorem about uniqueness and existence of fixed point.
References
Boriceanu, M. (2009). Fixed Point Theory on Spaces with Vector-Valued b Metrics. Demonstratio Mathematica, 42(4), 825-835.
Petre, R. I. & Bota, M. (2013). Fixed Point Theorems on Generalized b-Metric Spaces. Publ. Math. Debrecen, 83 (1-2), 139-159.
Mishra, P. K., Sachdeva, S., & Banerjee, S. K. (2014). Some Fixed Point Theorems in b-Metric Spaces. Turkish Journal of Analysis and Number Theory, 2(1), 19-22.
Agrawal, S., Qureshi, K., & Nema, J. (2016). A Fixed Point Theorem for b-Metric Space. International Journal of Pure and Applied Mathematical Sciences, 9(1), 45-50.
Reich, S. (1971). Some Remarks Concerning Contraction Mappings. Canad. Math. Bull., 14(1), 121-124.